377 research outputs found

    A methodology for physically based rockfall hazard assessment

    Get PDF
    Rockfall hazard assessment is not simple to achieve in practice and sound, physically based assessment methodologies are still missing. The mobility of rockfalls implies a more difficult hazard definition with respect to other slope instabilities with minimal runout. Rockfall hazard assessment involves complex definitions for "occurrence probability" and "intensity". This paper is an attempt to evaluate rockfall hazard using the results of 3-D numerical modelling on a topography described by a DEM. Maps portraying the maximum frequency of passages, velocity and height of blocks at each model cell, are easily combined in a GIS in order to produce physically based rockfall hazard maps. Different methods are suggested and discussed for rockfall hazard mapping at a regional and local scale both along linear features or within exposed areas. An objective approach based on three-dimensional matrixes providing both a positional "Rockfall Hazard Index" and a "Rockfall Hazard Vector" is presented. The opportunity of combining different parameters in the 3-D matrixes has been evaluated to better express the relative increase in hazard. Furthermore, the sensitivity of the hazard index with respect to the included variables and their combinations is preliminarily discussed in order to constrain as objective as possible assessment criteria

    Parametric evaluation of 3D dispersion of rockfall trajectories

    No full text
    International audienceThe capability of evaluating and managing rockfall related risks is largely based on numerical modelling. Nevertheless, the reliability and accuracy of rockfall models is greatly affected by the strong uncertainty and spatial variability which characterise all the relevant parameters. In particular, 3D effects related to the variability of slope geometry and micro-topography play a major role in controlling the dynamics of falling blocks. The most important 3D effect is the "lateral dispersion" of rockfall trajectories, largely affecting the way we model rockfall dynamics, design countermeasures and assess rockfall hazard. Nevertheless, the dependence of lateral dispersion on different controlling factors has been hardly ever systematically evaluated. In this paper, the influence of different controlling factors on the dispersion of rockfall trajectories has been systematically evaluated by performing 3D parametric modelling. Numerical simulations have been performed through a new software code able to use both a lumped mass and an hybrid (kinematic-dynamic) approach. Parametric modelling has been performed at different spatial resolutions using sets of biplanar simplified slopes characterised by different mean inclination and roughness. Model results outlined a complex dependence of lateral dispersion phenomena on slope mean gradient (macro-topography), slope roughness (micro-topography) and the spatial resolution of the model (model-dependent topography). Furthermore, the sensitivity of model results in terms of kinematic variables of motion (i.e. velocity and height to the ground) to the factors controlling lateral dispersion has been evaluated, resulting in practical constraints on countermeasure design and hazard assessment

    Observations and modelling of soil slip-debris flow initiation processes in pyroclastic deposits: the Sarno 1998 event

    Get PDF
    International audiencePyroclastic soils mantling a wide area of the Campanian Apennines are subjected to recurrent instability phenomena. This study analyses the 5 and 6 May 1998 event which affected the Pizzo d'Alvano (Campania, southern Italy). More than 400 slides affecting shallow pyroclastic deposits were triggered by intense and prolonged but not extreme rainfall. Landslides affected the pyroclastic deposits that cover the steep calcareous ridges and are soil slip-debris flows and rapid mudflows. About 30 main channels were deeply scoured by flows which reached the alluvial fans depositing up to 400 000 m3 of material in the piedmont areas. About 75% of the landslides are associated with morphological discontinuities such as limestone cliffs and roads. The sliding surface is located within the pyroclastic cover, generally at the base of a pumice layer. Geotechnical characterisation of pyroclastic deposits has been accomplished by laboratory and in situ tests. Numerical modelling of seepage processes and stability analyses have been run on four simplified models representing different settings observed at the source areas. Seepage modelling showed the formation of pore pressure pulses in pumice layers and the localised increase of pore pressure in correspondence of stratigraphic discontinuities as response to the rainfall event registered between 28 April and 5 May. Numerical modelling provided pore pressure values for stability analyses and pointed out critical conditions where stratigraphic or morphological discontinuities occur. This study excludes the need of a groundwater flow from the underlying bedrock toward the pyroclastic cover for instabilities to occur

    Numerical modelling of large landslides stability and runout

    No full text
    International audienceModelling of flow-like landslides is one of the possible approaches that can be used to simulate landslide instability and flow development. Models based on continuum mechanics and associated with a versatile rheological model are usually preferred to predict landslide runout and relevant parameters. A different approach has been used in this research. We have developed a 2-D/3-D finite element code to analyse slope stability and to model runout of mass movements characterised by very large displacements. The idea was to be able to use different material laws already known, tested and verified for granular materials. The implemented materials laws include classical elasto-plasticity, with a linear elastic part and different applicable yield surfaces with associated and non-associated flow rules. The application of Finite Element methods to model landslide run-out, contrasts previous research where typically depth-averaged equivalent-fluid approaches were adopted. The code has been applied to the simulation of large rock avalanches and rapid dry flows in different materials and under different geological and geomorphological conditions

    Local scale multiple quantitative risk assessment and uncertainty evaluation in a densely urbanised area (Brescia, Italy)

    Get PDF
    Abstract. The study of the interactions between natural and anthropogenic risks is necessary for quantitative risk assessment in areas affected by active natural processes, high population density and strong economic activities. We present a multiple quantitative risk assessment on a 420 km2 high risk area (Brescia and surroundings, Lombardy, Northern Italy), for flood, seismic and industrial accident scenarios. Expected economic annual losses are quantified for each scenario and annual exceedance probability-loss curves are calculated. Uncertainty on the input variables is propagated by means of three different methodologies: Monte-Carlo-Simulation, First Order Second Moment, and point estimate. Expected losses calculated by means of the three approaches show similar values for the whole study area, about 64 000 000 € for earthquakes, about 10 000 000 € for floods, and about 3000 € for industrial accidents. Locally, expected losses assume quite different values if calculated with the three different approaches, with differences up to 19%. The uncertainties on the expected losses and their propagation, performed with the three methods, are compared and discussed in the paper. In some cases, uncertainty reaches significant values (up to almost 50% of the expected loss). This underlines the necessity of including uncertainty in quantitative risk assessment, especially when it is used as a support for territorial planning and decision making. The method is developed thinking at a possible application at a regional-national scale, on the basis of data available in Italy over the national territory

    Integration of natural and technological risks in Lombardy, Italy

    Get PDF
    Abstract. Multi-risk assessment is becoming a valuable tool for land planning, emergency management and the deployment of mitigation strategies. Multi-risk maps combine all available information about hazard, vulnerability, and exposed values related to different dangerous phenomena, and provide a quantitative support to complex decision making. We analyse and integrate through an indicator-based approach nine major threats affecting the Lombardy Region (Northern Italy, 25 000 km2), namely landslide, avalanche, flood, wildfire, seismic, meteorological, industrial (technological) risks; road accidents, and work injuries. For each threat, we develop a set of indicators that express the physical risk and the coping capacity or system resilience. By combining these indicators through different weighting strategies (i.e. budgetary allocation, and fuzzy logic), we calculate a total risk for each threat. Then, we integrate these risks by applying AHP (Analytic Hierarchy Process) weighting, and we derive a set of multi-risk maps. Eventually, we identify the dominant risks for each zone, and a number of risk hot-spot areas. The proposed approach can be applied with different degree of detail depending on the quality of the available data. This allows the application of the method even in case of non homogeneous data, which is often the case for regional scale analyses. Moreover, it allows the integration of different risk types or metrics. Relative risk scores are provided from this methodology, not directly accounting for the temporal occurrence probability of the phenomena

    Soil slips and debris flows on terraced slopes

    Get PDF
    International audienceTerraces cover large areas along the flanks of many alpine and prealpine valleys. Soil slips and soil slips-debris flows are recurrent phenomena along terraced slopes. These landslides cause damages to people, settlements and cultivations. This study investigates the processes related to the triggering of soil slip-debris flows in these settings, analysing those occurred in Valtellina (Central Alps, Italy) on November 2000 after heavy prolonged rainfalls. 260 landslides have been recognised, mostly along the northern valley flank. About 200 soil slips and slumps occurred in terraced areas and a third of them evolved into debris flows. Field work allowed to recognise the settings at soil slip-debris flow source areas. Landslides affected up to 2.5 m of glacial, fluvioglacial and anthropically reworked deposits overlying metamorphic basement. Laboratory and in situ tests allowed to characterise the geotechnical and hydraulic properties of the terrains involved in the initial failure. Several stratigraphic and hydrogeologic factors have been individuated as significant in determining instabilities on terraced slopes. They are the vertical changes of physical soil properties, the presence of buried hollows where groundwater convergence occurs, the rising up of perched groundwater tables, the overflow and lateral infiltration from superficial drainage network, the runoff concentration by means of pathways and the insufficient drainage of retaining walls

    A general relativistic model for the light propagation in the gravitational field of the Solar System: the dynamical case

    Full text link
    Modern astrometry is based on angular measurements at the micro-arcsecond level. At this accuracy a fully general relativistic treatment of the data reduction is required. This paper concludes a series of articles dedicated to the problem of relativistic light propagation, presenting the final microarcsecond version of a relativistic astrometric model which enable us to trace back the light path to its emitting source throughout the non-stationary gravity field of the moving bodies in the Solar System. The previous model is used as test-bed for numerical comparisons to the present one. Here we also test different versions of the computer code implementing the model at different levels of complexity to start exploring the best trade-off between numerical efficiency and the micro-arcsecond accuracy needed to be reached.Comment: 40 pages, 5 figures. Accepted for publication on The Astrophysical Journal. Manuscript prepared with AASLaTeX macros v.5.

    Numerical analysis of deep-seated mass movements in the Magura Nappe; Flysch Belt of the Western Carpathians (Czech Republic)

    Get PDF
    Deep-seated slope failures are common features in the mountains of the Raca Unit, Magura Nappe of the Flysch Belt of Western Carpathians. Since they represent very complicated system, understanding of their evolution and triggers still remains unclear. We tried to provide a back-analysis of their development by using a finite difference code (FDM) of continua (Flac 4.0). We confirmed that such large mass movements could be triggered by water saturation of the bedrock in the three particular geological and geomorphic settings. Such situation could have been caused by heavy rainfalls in humid phases of the Holocene or permafrost melting in Late Glacial. The effects of faulting, very deep weathering of the bedrock, low geotechnical parameters of smectite-rich material and the local slope geometry have also been accounted for in numerical models, as well as the other triggering factors of slope instability. FDM modelled shear zones are in agreement with observations
    • …
    corecore